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Low-abundant bacteria drive compositional
changes in the gut microbiota after dietary
alteration
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Abstract

Background: As the importance of beneficial bacteria is better recognized, understanding the dynamics of
symbioses becomes increasingly crucial. In many gut symbioses, it is essential to understand whether changes in
host diet play a role in the persistence of the bacterial gut community. In this study, termites were fed six dietary
sources and the microbial community was monitored over a 49-day period using 16S rRNA gene sequencing. A
deep backpropagation artificial neural network (ANN) was used to learn how the six different lignocellulose food
sources affected the temporal composition of the hindgut microbiota of the termite as well as taxon-taxon and
taxon-substrate interactions.

Results: Shifts in the termite gut microbiota after diet change in each colony were observed using 16S rRNA gene
sequencing and beta diversity analyses. The artificial neural network accurately predicted the relative abundances
of taxa at random points in the temporal study and showed that low-abundant taxa maintain community driving
correlations in the hindgut.

Conclusions: This combinatorial approach utilizing 16S rRNA gene sequencing and deep learning revealed that
low-abundant bacteria that often do not belong to the core community are drivers of the termite hindgut bacterial
community composition.
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Background
Symbioses are widespread in nature, and beneficial
digestive-tract symbioses have been shown to be critical for
host health [1]. The benefits and contributions of the gut
microbiota include enhancement of digestion efficiency,
provision of nutrients and vitamins, and procurement of di-
gestive enzymes [2]. Members of the microbiome can con-
tribute to host health by detoxifying allelochemicals from
plants, such as tannins, flavonoids, and alkaloids, along with
creating colony resistance against possible pathogens [3].
When the host feeds on a nutrient-poor diet, the reliance
on the physiological capabilities of the microbes is even
greater. Mammals that feed on a cellulose-rich diet, such as
ruminant cows, require a gut bacterial community to

generate energy for the host due to the inability of mam-
mals to produce cellulases [4, 5]. In contrast, some insects
can produce cellulases and sometimes harbor protist sym-
bionts that are crucial to the breakdown of the wood meal
[4]. These insects rely on the bacterial symbionts to provide
a source of energy in the form of short-chained fatty acids
(SCFAs) and for nutrients that are present at low amounts
or are absent in plant food sources, such as nitrogen, amino
acids, sterols, and many B vitamins [6, 7].
Insect-feeding habits have been shown to partially dictate

the microorganisms present in the gut. Cockroaches fed a
low-protein and high-fiber diet showed decreases of
Streptococci and Lactobacilli in their gut, coinciding with
the reduction of acetate and lactate production [8]. The gut
of the American cockroach, Periplaneta americana, is pop-
ulated by a higher abundance of protozoa when fed a high-
cellulose diet [9]. The house cricket, Acheta domesticus,
shows reduced production of H2, CO2, and SCFAs when
fed a high-protein diet compared to other diets [10]. A
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comprehensive study on higher termites showed that diet
plays a role in shaping the gut microbiota. Bacteria with the
ability to degrade cellulose were observed to be present in
higher abundances in wood-feeding termites compared to
termites fed diets without cellulose [11]. In contrast, ter-
mites that feed on humus and soil have a more alkaline gut
environment, and bacteria that live in more alkaline envi-
ronments were shown to be more abundant in these ter-
mites [12]. Reticulitermes flavipes, the eastern subterranean
termite, is a wood-feeding lower termite that harbors pro-
tist, bacterial, and archaeal symbionts. The protists are
thought to aid in the breakdown of cellulose and lignocellu-
lose, while the bacteria and archaea use the breakdown
products to produce nutrients for the symbiotic community
and the host [13, 14].
Although microbiomes are being extensively studied,

temporal studies are limited in their scope, and predictive
in silico modeling of microbiome dynamics is lacking.
Only a few studies have attempted to model a micro-
biome, learning about the dynamics between members of
the community and environmental factors [15]. Reasons
for the lack of microbiome models include the inherent
complexity of most communities, the computational diffi-
culty of modeling highly nonlinear relationships, and the
need to account for the effect of many external influences,
such as substrate, temperature, pH, and micronutrient
concentrations. One of the few studies performed in this
area involved using an artificial neural network (ANN)
with Bayesian network inference to predict the relative
abundance of a microbial taxon in the English Channel as
a function of its environment [16]. While this method was
successful at modeling how the environment shapes the
microbiota, it did not answer the question of how to iden-
tify important taxa or environmental factors once the dy-
namics are learned. Similarly, previous studies observed
which organisms in the rhizosphere microbiome are im-
portant for disease protection in plants, but there is no
current method to determine which taxa or environmen-
tal factors influence the growth or decline of these organ-
isms based on a learned model [17]. Combining the
qualitative knowledge of the bacterial members of a
microbiome with quantitative in silico modeling of micro-
biomes is key for identifying influential organisms in the
microbiome, as well as for learning how members of a
microbiome work synergistically or antagonistically.
The hindgut microbiome of the lower termite, R. flavipes,

is suitable for testing predictive models because of the de-
tailed understanding of the community members. Further-
more, R. flavipes is capable of feeding on different types of
wood and can be easily maintained in the lab [18]. An im-
portant aspect of the hindgut microbiome is that a large
proportion of the taxa is consistently present in individual
termites [18]. These taxa are considered to be part of the
“core” community. In this work, the composition of the R.

flavipes hindgut microbiota was monitored by sequencing
the V4 region of the 16S rRNA gene over time following
dietary changes. An algorithm inspired by Larsen et al. [16]
used a deep artificial neural network (ANN) to learn the
dynamics of the microbiota resulting from external influ-
ences, such as changes in the diet, and from changes in the
relative abundance of the taxa in the microbiome observed
in the 16S rRNA gene sequencing data. The ANN was then
trained on this data, and a sensitivity analysis was per-
formed to determine the accuracy of the model. When used
in conjunction with microbial community analyses, the
ANN-learned dynamics allowed for an in-depth analysis of
the microbiome to understand taxon-taxon and taxon-
substrate interactions.

Results
Effect of dietary changes on the termite hindgut
microbiota
The hindgut microbiota of termites supplies the host with
energy and nutrients by fermenting the ingested lignocellu-
lose. While it has been shown that this community struc-
ture changes when termites are fed different diets [19, 20],
it is not known how fast these changes occur. By dividing
members from a single colony into different groups, which
were provided with different food sources and sampled over
a 7-week period, we were able to determine how a change
in the diet affected the termite hindgut microbiota.
The overall composition of the hindgut community was

assessed by determining the Bray-Curtis beta diversity and
depicting the resulting values on a multidimensional scal-
ing (MDS) plot (Fig. 1). All day 0 samples were similar to
each other. The microbiota of termites that were main-
tained on original mulch did not exhibit a significant
change in the overall composition of the community when
compared to day 0 samples (PERMANOVA, f = 2.03, p =
0.029). The microbiota of termites maintained on all other
diets gradually moved away from the day 0 samples over
time, which is indicative of a temporal effect of the food
source on the hindgut microbiota. For the first 7 days, the
communities were similar to day 0, but samples from later
dates differed significantly, suggesting that dietary changes
affected the composition of the hindgut microbiota (PER-
MANOVA, f = 4.18, p = 0.001). This finding suggests that
the hindgut microbial community shifted after approxi-
mately 7 days of feeding on a new diet.
Observed differences in a microbial community can be

due to instances in which OTUs (operational taxonomic
units) are present or absent. Differences may also be ex-
plained by a change in the abundance of sequences from
any given OTU. The microbes present in the hindgut
can be divided into members of the core, which are con-
sistently present, and non-core taxa, which are present
intermittently [21, 18]. For this analysis, the sequence
counts for each OTU belonging to the same taxon were
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combined, and the taxonomic abundance values for all
time points in each diet were plotted (Fig. 2). Treponema
and Endomicrobia sequences accounted for > 10% of the
sequences for all diets, excluding samples from starved
termites. Members of these two taxa are known to be as-
sociated with the hindgut protists, which decrease in
number when the termite is starved, likely leading to a
concomitant decrease in their endo- and ectosymbionts
[22]. The order Bacteroidales accounted for 1–10% of
the sequences in all samples, with the lowest abundance
detected in samples from birch-fed termites. The
remaining taxa were present at abundances of less than
3%, with most accounting for < 1%.
Another characteristic of microbial communities is the

diversity of the species present, which can be measured by

the Shannon Index (H′), and the evenness of the commu-
nity, which is measured by equitability (EH) metrics (Fig. 3),
with a value of zero representing a completely even com-
munity and a value of one representing an uneven commu-
nity. The average H′ and EH values observed were 6.58
and 0.723, respectively. Termites fed birch and spruce
showed the most variability within the colony, but there
was no significant difference in the richness or evenness
among the colonies when compared to day 0 based on a
one-way ANOVA analysis.

Learned microbiome dynamics
The time series data from seven different diets was used at
the order level to train an ANN. The robustness of the
ANN was evaluated using a tenfold cross validation analysis

Fig. 2 Effect of diet on the core and non-core taxa in the hindgut. The relative abundance of sequences from OTUs present in the core and
non-core taxa were calculated for each diet. The boxplot ranges from the minimum to maximum abundance values, with a line at the mean.
No diet had a significant effect on sequences from the core taxa as compared to the initial day 0 abundances

Fig. 1 Diet change causes shifts in the hindgut microbiota. An MDS plot using the Bray-Curtis dissimilarity metric shows the shifts in the bacterial
community maintained on different diets for 49 days (PERMANOVA, f = 4.18, p = 0.001). Ellipses show the standard deviation of the mean within
each diet
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[23] and by determining the Bray-Curtis similarity. First, a
tenfold cross-validation analysis was carried out in which
the total data set was randomly portioned into ten equal
parts. The ANN was trained on nine parts and validated on
the final part. The process was then repeated nine times,
with each part being used as the validation set once and the
remaining parts used as the training set. The tenfold cross
validation analysis yielded an average mean absolute per-
centage error of 2.5%.
The ability to predict microbial communities following

perturbations is an important facet of microbial ecology.
The use of a computationally feasible process, such as
ANN, is beneficial for testing and forming hypotheses. To
analyze the predictive capability of the network, a single
time point was excluded from each of the seven diets, and
the ANN was trained on the remaining samples. The ter-
mite gut community composition predicted by the neural
network was compared to the actual values obtained
through sequencing (Fig. 4) at the seven excluded samples.
The results showed that the ANN was able to predict the
relative abundance of each taxon within 15% of the mea-
sured values. The ANN predicted the majority of the taxa
within 1% of the measured values. The taxa with higher
discrepancies were highly abundant (> 10% abundance).
The average abundance of each taxon is also shown (ex-
cluding the starved time point). Under these conditions,
the observed Bray-Curtis similarity was 0.8681. These re-
sults indicated that the network was sufficiently trained
and was robust enough to predict the bacterial compos-
ition of the microbiome over time.

Low-abundant taxa shape the gut microbiome
xA 2D heatmap of taxon-taxon and taxon-substrate rela-
tionships was created by altering the relative abundance
of each taxon/substrate by ± 5% (Fig. 5). As a taxon/sub-
strate (on the left) is changed ± 5%, the shifts in abun-
dance of the other taxa in the community (along the
top) are shown in the heatmap, with blue pixels indicat-
ing direct relationships and red pixels indicating inverse
relationships. The majority of taxa exhibited weak or no
relationships, while a number of taxa exhibited strong
relationships with a few to many other taxa in the com-
munity. The correlations can be divided into outbound,
where the taxon affects other taxa, and inbound, where
the taxa is affected by another taxon (Fig. 6). All of the
17 correlations associated with Spirochaetales were ob-
served to be outbound, suggesting that Spirochaetales
had the largest effect on the community as a whole.
Along with Spirochaetales, Bacteroidales and Clostri-
diales were abundant taxa with multiple correlations, 15
and 11 respectively. Importantly, the low abundant,
highly connected taxa were not detected in reagent con-
trol samples, indicating that they are indeed part of the
termite microbiome.
The 2D heatmap was used to calculate the taxa and

substrates with significant correlations with respect to other
taxa (> 3 standard deviations of the absolute average of the
% change matrix). Seven core taxa had significant correla-
tions, while 18 non-core taxa had significant correlations
(Fig. 7a). Fifteen of the taxa with significant correlations
were affecters of the community (Fig. 7b). Bacterial taxa

Fig. 3 Alpha diversity of the R. flavipes hindgut fed multiple diets. The Shannon Index (H′) and Shannon Equitability (EH) metrics were used
to calculate the diversity and evenness of the microbiota of the termite hindgut over 49 days when introduced to different diets and plotted
using a box and whisker plot. A one-way ANOVA was used to compare the H′ and EH values from each diet to day 0 and showed no significant
difference (p > 0.05). day 0 (n = 9), original mulch (n = 27), cardboard (n = 26), birch (n = 24), maple (n = 28), oak (n = 17), spruce (n = 24), and
starved (n = 10)

Benjamino et al. Microbiome  (2018) 6:86 Page 4 of 13



present at relative abundances of greater than 1% contrib-
uted to 36 total affecter correlations, while taxa present at a
relative abundance of less than 1% accounted for 49 total
affecter correlations. Taxa with greater than five affecter
correlations included Spirochaetales, Bacteroidales,

Methylacidiphilales, Thermoplasmata (E2), Coriobacter-
iales, Proteobacteria (CV90), Clostridiales, Rhodocyclales,
and Leptospirales. Seven of the nine taxa lie outside of the
core, six of them representing less than 1% of the overall
community.

Fig. 4 Accuracy of the ANN to predict taxonomic abundances. In training the ANN, one sample per random time point for each diet (along top) was left
out and used to test the accuracy of the ANN. The measured abundances of taxa (order) in the samples were compared to the abundances predicted by
the ANN. The taxa represented in the core microbiota are denoted by an asterisk, and the average abundances are plotted in the right column (purple).
The difference between the actual values and predicted values was calculated and shown in green. The number of significant correlations for each taxon
is also shown in the left column (yellow). The ANN was able to predict the taxonomic abundance of each taxon within less than 16% of the measured
value. The taxa with the largest differences were present at average abundances of > 14%; therefore, the differences could be due to background noise.
The majority of predicted values were < 1% different from the measured values
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Discussion
Our study revealed that altering the food source of R.
flavipes affected the overall composition of the hindgut
microbiota without affecting the members of the core taxa.
The MDS analysis revealed that after 7 days on a new diet,
the overall community differed significantly from the com-
munity at day 0. This change in the community structure

was driven by the less abundant microorganisms that were
separate from the core microbiota. In comparison, the con-
trol group that was continuously fed mulch was not signifi-
cantly different from day 0 after 7 days (f = 2.03, p = 0.029).
A previous study fed R. flavipes either a wood or a paper
substrate, sampled the hindgut microbiota after 7 days, and
reported the similarities and differences between the

Fig. 5 2D heatmap of influences of taxa and substrates on other taxa. The abundance of each taxon/substrate is labeled on the left and
corresponding taxa are numbered across the top. Each taxon abundance value was changed by ± 5% (present/absent for substrate), and
the effect on the remaining taxa is shown in the heatmap. Direct correlations are shown in blue, and inverse correlations are shown in red
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hindgut bacterial communities [19]. They observed that ter-
mites from the same colony that were fed different diets
were more similar to each other than termites from differ-
ent colonies that were fed the same diet after 7 days. How-
ever, data for later time points were not reported in the
study, time points at which changes in the hindgut commu-
nity were observed in the present study. Our results are
similar to those reported from wood-eating cockroaches

and higher termites. In wood-eating cockroaches that are
closely related to termites, the members of the core micro-
biota were shown to be stable during dietary changes [24].
In higher termites that do not harbor protist symbionts, it
was shown that the dominant members of the hindgut
microbiota remained stable and that only less abundant
members were affected [12]. It is interesting that these
three studies consistently determined that the core was not
affected by dietary changes. This highlights the critical con-
tributions of the individual taxa to the overall function of
the hindgut microbiota and animal host. The most abun-
dant organisms in a symbiotic habitat have been shown to
perform important functions within the environment, es-
sentially securing their constant presence in the environ-
ment [25]. A study of the gut microbiota of 37 adults over
5 years showed that approximately 60–70% of the strains
remained stable throughout the study. Furthermore, the
most stable organisms were also the most abundant, which
supports our findings [26]. The compositional stability of
the core microbiota is consistent with the idea that the host
and its microbes form one functional unit upon which se-
lection acts, as has been proposed in the holobiont theory
[27–29]. In our study, mostly non-core members exhibited
altered abundances and contributed to shifts in community
structure when the food source was altered suggesting that
these variable microbes play a critical role in expanding the
holobionts capacity to occupy new niches.
The major exception to the stability of the core micro-

biota occurred in the group that was starved. Starved ter-
mites have been shown to lose their symbiotic hindgut
protists, which are associated with Treponema, belonging
to the order Spirochaetales, and Endomicrobia extracellular
and intracellular symbionts, respectively. Thus, the ob-
served decrease in the relative abundances of Treponema
and Endomicrobia was expected. While the Treponema

Fig. 7 Significantly correlated taxa in the hindgut. a A taxon was considered significantly correlated if the value in the heatmap (Fig. 5) was
above three standard deviations of the absolute average of the relative-change matrix generated. b Core taxa are designated with an asterisk,
while taxa < 1% abundance are designated with a minus sign. The majority of significant correlations belong to non-core, low-abundant taxa

Fig. 6 Connectivity network of significant influences of taxa and
substrates on other taxa. Each significant correlation observed in the
heatmap was plotted using a vertice-edge plot. Direct correlations
are shown in blue, and inverse correlations are shown in red. The
top ten most abundant taxa are highlighted in yellow. The core
members of the microbiota are drawn with a square vertex and the
other taxa with a circle vertex
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exist as both protist symbionts and free-living bacteria, the
Endomicrobia are strict endosymbionts of the protists. It
was therefore not surprising to observe the greater drop in
the abundance of Endomicrobia in starved termites com-
pared to Treponema [30, 31]. It was interesting to note that
the Endomicrobia were most abundant in the spruce-fed
termites, which was also observed in pine-fed termites by
Huang et al., suggesting that this substrate may create a
hindgut environment that enriches for the protist and
Endomicrobia populations [20].
The ANN was used to evaluate the effect of a particu-

lar taxon or diet on the other taxa, determine the con-
nectivity of a particular taxon to other taxa, and predict
the composition of the community at any given point in
time. A temporal comparison of the bacterial OTUs
from the day 0 gut communities to end-point communi-
ties for each diet showed that dietary changes influenced
the composition of the hindgut microbiota in R. flavipes
(Fig. 1). Predictions from the in silico model corrobo-
rated these results, as the number or strength of correla-
tions between substrate and taxa were greater in each
diet (except maple) compared to the number/strength of
correlations for the original mulch (diet of day 0 sam-
ples) (Fig. 5). Oak was the only substrate with significant
correlations to the gut community, suggesting a disturb-
ance to the gut microbes or the need for different meta-
bolic strategies to breakdown its components. When
grouped by order, the in silico model showed that Spiro-
chaetales, the order to which the genus Treponema be-
longs, was the most connected order, with 17 total
important correlations (Fig. 7b), while no correlations
for Endomicrobia were observed. Treponema are aceto-
genic spirochetes that are hypothesized to contribute to
the majority of the acetate production in the termite
hindgut, which solidifies its importance to the commu-
nity as acetate is a vital short chain fatty acid (SCFA) to
other microbial members and the termite host [32, 33].
Termite gut Treponema live associated and disassociated
with protists, and Endomicrobia are strict endosymbi-
onts of the protists. If the protists and their endosymbi-
onts are required at a constant level for the degradation
of the lignocellulose, irrespective of its source, it may be
that their abundance is decoupled from auxiliary
changes in the community structure.
A powerful aspect of the neural network analysis was

that after having trained the algorithm, it could be used to
predict future values with relatively good robustness. This
suggests that even for a community as complex as that
found in the termite hindgut, and with a relatively sparse
sampling frequency, the ANN was able to accurately pre-
dict the community composition. One limitation of this
analysis is that due to complexity of the interactions, the
ANN was performed on the level of taxonomic orders. It
would be interesting to perform and evaluate the accuracy

of this analysis on data from other time series, including
humans. If future implementations are able to use lower
taxonomic levels, the ANN could prove to be an import-
ant predictor of an unbalanced microbial community or
dysbiotic state before it occurs. Understanding the effect
of diet on a microbial population is valuable because it
provides insight into the dynamics of the symbiotic niche.
In a laboratory setting, it is necessary to consider the bio-
logical effect diet has on a host organism and its symbiotic
bacteria. The ability to predict the taxonomic composition
of a community is beneficial for forming hypotheses about
an environment and can provide insight into the commu-
nity dynamics within that environment.
Since the start of the high-throughput 16S sequencing

revolution, scientists have reported on microbiomes, often
focusing on the more abundant taxa or grouping the popu-
lations into phylotypes [34]. Many microbial community
surveys draw focus to abundant organisms in order to gen-
erate conclusions on impact and importance of microbes.
In order to view these bacterial populations in numerous
samples, it has been standard protocol to show organisms
at abundances greater than 1% [35–37], or group the low-
abundant organisms into an “other” category [9, 38]. While
this is a widely accepted method of determining correla-
tions between healthy and diseased states and reporting mi-
crobial communities in general, researchers may be missing
key organisms in the low-abundant population. The im-
portance of low abundant organisms has been reported in
other systems, such as Desulfosporinus in peatlands. Pester
et al. reported finding Desulfosporinus at 0.006% of the 16S
rRNA reads in peatland communities and determined that
this small fraction of the community contributes signifi-
cantly to the overall sulfate reduction [39]. Sogin et al. re-
ports the importance of the “rare biosphere” in marine
environments and explains the contribution of these low
members to diversity and the gene pool [40]. Low-
abundant microbes may contain a pool of genes, that under
specific conditions become activated and carryout meta-
bolic processes important to the overall community [41].
For example, the removal of rare microbes from freshwater
samples resulted in the reduced ability of the microbes to
neutralize toxins and pollutants [42], suggesting that the
rare microbes can perform critical functions in an unfavor-
able environment. While some microbes are rare, they can
contribute to the complete metabolic potential of the com-
munity if they are highly active, enhance or trigger the
metabolic activity of more dominant members, or contain
enzymes needed for complex metabolic processes that are
not found in the dominant members [41, 43]. In this study,
only four core taxa had greater than five significant correla-
tions, while 13 non-core taxa had greater than five signifi-
cant correlations (Fig. 7). Only five of the 15 taxa with
significant correlations were abundant at greater than 1% of
the community. This suggests that although the core and
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highly abundant taxa perform important functions for the
community and are conserved throughout diet changes
and time, the non-core and less abundant taxa may play
important roles in shaping the gut community.

Conclusion
Gut microbiome dynamics is an important but challen-
ging topic due to the taxonomic complexity of the com-
munity and wide range in abundance of its members.
Using the complex microbiome of termites as a test case,
we have developed a method using deep learning artifi-
cial neural networks for temporal taxon prediction based
on environmental conditions and the original state of
the microbiome. This method also allows the detection
of connectivity of taxa with other taxa based on changes
in the abundance of microbes during environmental
changes. This deep learning approach revealed that low-
abundant bacteria that often do not belong to the core
community are drivers of the termite hindgut bacterial
community composition.

Methods
Experimental design and maintenance
The R. flavipes termites were purchased from Connecti-
cut Valley Biological Supply Co. in Southampton, MA
and initially maintained on the mulch they were shipped
with. These mulch-fed termites were separated into col-
onies that received distinct diets. The colonies were kept
in plastic containers with autoclaved sand and food. Ter-
mite colonies were maintained in a dark cabinet at room
temperature (~ 23 °C) and kept moist with autoclaved
water. The samples used in this study were all from the
worker caste.
Colonies were fed either mulch (never changed from

original food source); wood from spruce, oak, maple, or
birch; or cardboard, while one colony was starved. Ter-
mites were sampled on the day of arrival (day 0) and on
days 1, 2, 3, 7, 14, 21, 28, 35, 42, and 49 after arrival. Five
termites were sampled from each diet source for each
time point (three per diet and time point were se-
quenced, except for day 0). The starved colony was sam-
pled through day 21, and the oak-fed colony was
sampled through day 28, both due to the lack of termites
available in the colony. The samples from day 0 were
previously published from Benjamino and Graf [18]. The
wood used was non-treated firewood, the cardboard was
from shipping boxes, and the original mulch used was
the material shipped with the termites from CT Valley
Biological Supply Co. Termite DNA was used for cyto-
chrome C oxidase II gene (COII) sequencing to ensure
the termites were Reticulitermes flavipes. Primers used
for COII sequencing were a modified A-tLEU (5′-
CAGATAAGTGCATTGGATTT-3′) and B-tLYS (5′-
GTTTAAGAGACCAGTACTTG-3′) from Liu and

Beckenbach [44] and previously reported in Benjamino
and Graf [18].

Sample collection and DNA isolation
Hindguts were removed from the termite and separated
from the foregut/midgut and rectum. Single hindguts
were collected in 1X TE buffer (10 mM Tris-HCl, 1 mM
EDTA, pH 8.0). DNA was isolated immediately after col-
lection using a modified (500 μL starting lysis buffer,
elution in 30 μL AE buffer) RBB+C isolation protocol as
described by Yu and Morrison [18, 45]. During each set
of DNA isolations, a reagent-only control was processed
and sequenced to test for reagent contamination (ex.
Neg.7 for day 7 isolations) (Additional file 1).

PCR amplification and library preparation
Hindgut samples were amplified using the V4 hypervari-
able region of the 16S rRNA gene using primers devel-
oped by Carporaso et al. [46]. PCR reactions included
Phusion High-Fidelity PCR Master Mix with HF Buffer
(50% of total volume), 10 μM forward and reverse primers
(3% each of total reaction volume), ~ 10 ng DNA, and mo-
lecular biology grade nuclease-free water to the final vol-
ume [47]. All reactions were amplified in triplicate using
the following parameters: 94 °C for 3 min, followed by
30 cycles of 94 °C (45 s), 50 °C (60 s), and 72 °C (90 s),
with a final extension of 72 °C for 10 min [46].
Amplicons were purified and size selected using the

GeneRead™ Size Selection Kit by Qiagen© to select for
400-bp amplicons according to the manufacturer’s
protocol. Samples were then quantified using a Qubit®
dsDNA HS Assay and diluted to 4 nM. All samples were
pooled in equimolar amounts for sequencing. A mock
community was also prepared and sequenced alongside
these samples and has been previously published by Nel-
son et al. [48].

Sequencing and data processing
Samples were sequenced using an Illumina MiSeq with
custom sequencing primers added to the reagent cart-
ridge [46] and sequenced 2 × 250bp. Output reads from
the MiSeq were merged to create single reads spanning
the entire 254 bp length of the V4 hypervariable region
using SeqPrep (https://github.com/jstjohn/SeqPrep), and
the PhiX control reads were removed by mapping to the
PhiX genome [48]. Data analysis was performed on
high-quality reads (Q30 or greater) using Qiime [46].
Operational taxonomic units (OTUs) were determined
by clustering reads to the V4 hypervariable region of the
DictDb 16S rRNA reference dataset at a 97% identity
level [12, 18]. Reads that failed to cluster to the DictDb
reference were clustered to the Greengenes reference
16S reference dataset (2013-08 release) at a 97% identity,
and then de novo OTU clustering was performed on
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reads that failed to cluster to a reference [49]. The data-
set was checked for chimeras and filtered to remove
singleton and doubleton OTUs and then OTUs present
at less than 0.0005% [48, 50].

Sequence analysis
After quality filtering and rarifying to 18,000 sequences
per sample, alpha diversity (Shannon Index and Equit-
ability) [51] and the Bray-Curtis beta diversity metric
[52] were performed using Qiime 1.9. The OTU table
and rarified taxonomy table can be found in Additional
files 2 and 3. The Shannon Index and Equitability were
graphed using GraphPad Prism version 6.0f for Mac
OSX (GraphPad Software, San Diego, CA, USA, www.
graphpad.com), and a one-way ANOVA with Bonferroni
post-test analysis was performed for each. An MDS plot
using the Bray-Curtis metric was created in R 3.2.0 [53,
54]. The PERMANOVA statistical analysis was per-
formed to determine the significance of microbial com-
munity differences among the different food sources and
temporally [55]. The test used the Bray-Curtis dissimilar-
ity matrix as the input and was performed over 999 per-
mutations and returned a Pseudo-F (f ) statistic along
with a p value (p). Each test compared the day 0 samples
to the last 2 days of samples in other diets.
Taxonomic abundance data was calculated using the

percent abundance of OTUs present in the core micro-
biota. The relative abundance of each taxon, along with
the non-core taxa, was combined for each diet and pre-
sented with the mean abundance of the temporal data.
The non-core abundances were calculated by combining
the remaining OTUs that were not present in the core.

Artificial neural network
The relative abundance of each OTU was grouped by
taxonomic order, as grouping by species for learning
microbiome dynamics introduced a significant amount
of noise and error to the algorithm. A deep backpropa-
gation artificial neural network (ANN) was created using
fast artificial neural network (FANN) [56] with a net-
work topology as shown in Fig. 8. Two hidden layers
were utilized due to the ability of deep learning neural
networks to learn representations of data with multiple
levels of abstraction, such as taxon-taxon interactions
and taxon-substrate interactions. In addition, deep
neural networks have been shown to implement ex-
tremely intricate functions of its inputs that are simul-
taneously sensitive to minute details and insensitive to
large irrelevant variations [57]. The number of nodes in
each hidden layer was determined by keeping the num-
ber of nodes in each hidden layer close to the number of
nodes in the input and output layer as a general rule. In
addition, multiple cross validations were performed with
different percentages of nodes in each hidden layer with

respect to the number of nodes in the input layer. The
goal of training the ANN was to learn dynamics of the
microbiota based on substrate provided to the colony
and the influence of other community members. The
network was trained using the relative abundance of
each order and the presence or lack of substrate given at
a time period t for the input nodes. The output repre-
sented the relative abundances of each order for the time
period t + 1. The general algorithm is shown in Fig. 9.
Since there was no target for the last time point (day 49)
, the last time point was never used as an input to the
ANN. In addition, one random time point from each
comma-separated value (CSV) (7 in total) was left out of
training and used for testing the ANN.
The network used the standard backpropagation algo-

rithm native to FANN to train on the dataset until the
error threshold was met or the maximum number of
epochs had passed. The activation function used in the
first hidden layer was the hyperbolic tangent function
(tanh), while the second hidden layer used the sigmoid
function,

S xð Þ ¼ 1
1þ e−x

ð1Þ

Using an antisymmetric activation function has been
shown to improve convergence for more connected net-
works than an asymmetric activation function, so tanh
was chosen as the first hidden layer’s activation function
[58]. However, the output of the ANN is the relative abun-
dance of a taxon for each output node, which must be in

Fig. 8 Topology of the ANN used to train on sequenced data. The
number of input nodes was set to the number of taxonomic orders
(T) plus the number of substrates (S) (70 total). The number of nodes in
the first hidden layer was set to 95% of the total input nodes, whereas
the number of nodes in the second hidden layer was set to the 85%.
The number of output nodes was set to the number of taxonomic
orders, as the goal of the network was to predict relative abundance
changes over time for each taxon. The arrangement of taxonomic
orders remained constant for each CSV file
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the bounds [0,1]; therefore, the sigmoid function was used
for the second hidden layer’s activation function.
After each epoch of training, the mean standard error

or MSE was returned. If the error was under the error
threshold, training was halted and the network was
saved. The network was then tested using the seven time
points left out of the training dataset. After testing, the
ANN was subject to sensitivity analysis using a test time
point from day 0. The parameters of the neural network
are shown in Table 1.

Microbiome dynamics analysis
Once the network was sufficiently trained, a sensitivity
analysis was performed on the ANN to determine how
each taxon changes over time in response to a change in
another taxon or substrate. One relative taxon abun-
dance time point for each substrate was kept from the
ANN training set and used to test the prediction

capabilities of the ANN. Since each input node was rep-
resentative of a taxon or substrate and each output node
was representative of the predicted relative abundance
for a given taxon at the next time point, changing each
input node individually and comparing the predicted
outputs to the original outputs would allow us to dis-
cover the learned dynamics. Therefore, each input node
was varied independently 100 times to a value ± 5% of
the original input node’s value. The ANN was then run
for each new value of the input node while holding the
other input values constant. After each run of the ANN
at the new input node value, the new outputs, or pre-
dicted relative abundances of each taxon were recorded
and compared to the original output. The percent
change of each output node was compared to the per-
cent change of the input node being varied using the fol-
lowing equation:

Relative change ¼ new output−original outputð Þ
original output

� new input−original inputð Þ
original input

� �
� 100%

ð2Þ
This was repeated for each new value of the input

node being tested. After all new values of the input node
were tested, the average change of each output node was
taken, which showed how each taxon (output node)
changed with respect to a change in a certain taxon or
substrate (input node). This was repeated for every input
node to determine how the relative abundance of each
taxon changed with respect to changes in a given taxon
or substrate. The general algorithm is shown in Fig. 9.
The end result of the sensitivity analysis was a matrix of
relative change values (Fig. 10). In other words, each
row of the matrix is representative of a taxon or sub-
strate, or an input node of the ANN. Each column is
representative of a taxon, or an output node of the

Fig. 10 Algorithm for sensitivity analysis

Table 1 ANN training parameters

Input nodes 62

Hidden 1 nodes 59

Activation 1 Hyperbolic tangent

Hidden 2 nodes 53

Activation 2 Sigmoid

Output nodes 56

Error threshold 10−5

Momentum 0.65

Learning rate 0.15

Max epochs 20,000

Fig. 9 Algorithm for training the ANN
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ANN. Each value in the matrix is the average relative
change of the output node (column) with respect to the
input node (row).
A 2D influence heatmap was generated using Matplo-

tlib in Python [59]. The heatmap displays the magnitude
and direction (direct/inverse) of each relationship be-
tween each input node (taxon/substrate) and output
node (taxon). A connectivity network was also generated
using the graph-tool library in Python [60]. The con-
nectivity network was constructed using a vertices-edge
plot where each vertex was a node in the ANN or a
taxon/substrate. An edge was drawn between two verti-
ces if the value in the change matrix was more than
three standard deviations above the absolute value of the
average of the whole array. The top ten most connected
vertices were highlighted and returned from the con-
nectivity network.

Additional files

Additional file 1: Control samples for 16S rRNA gene sequencing.
A Qiime generated OTU table for the positive and negative controls
used in the 16S rRNA gene sequencing portion of the manuscript.
(XLSX 98 kb)

Additional file 2: 16S rRNA gene sequencing OTU table. The Qiime
generated OTU table for the samples used in this study. (XLSX 663 kb)

Additional file 3: Complete taxonomy table. Rarified (18,000 sequences)
taxonomy table used in this study. (XLSX 219 kb)
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